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A complete expression for the propagator corresponding to a 
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Forum for Theoretical Science, Physics Department, Faculty of Science, Chulalongkom 
University, Bangkok 10330, Thailand 

Received 20 August 1991 

Abstract. In this paper we give a wmplete expression for the propagator wrresponding 
to the motion of a series of non-local harmonic oscillators under the influence of a n  
arbitrary driving force. The method of derivation is based on a direct solution of the 
corresponding classical equation of motion. The time and end-point parameters are kept 
completely general throughout. 

1. Introduction 

Path-integral methods have for a long time been known to provide a powerful non- 
perturbative treatment for a variety of physical problems. It is very often the case that 
the retarded propagator may be expressed in terms of a path integral with an action 
containing a non-local term of the form 

j i d r  ji duf(r(T)-r(u)). 

Examples are to be found in Feynman's pioneering work on the polaron [I], as well 
as in disordered systems [2]. However, since it is usually the case that an exact solution 
for the propagator cannot be found, we must resort to variational methods. The standard 
technique is to simulate the exact non-local action term with a non-local trial harmonic 
term of the form 

A number of variational parameters may be included in this expression in order to get 
the best possible result. 

In this paper we present an explicit derivation of the propagator corresponding to 
the following non-local harmonic action: 

+ ( b d r F ( r )  ' r ( r )  (1.1) 

where K~ > 0 and the parameters fij are distinct. The final expression for the propagator 
will depend on the time parameter f and the end-point parameters r ( t )  and r ( 0 ) .  We 
emphasize that these parameters are kept absolutely general throughout the derivation. 
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The meanings of the terms in the action are as follows. The first term is the kinetic 
energy of the particle of mass m. The second term consists of a sum over n non-local 
oscillators, each one being of the form used in Feynman's work on the polaron [l]. 
The parameters K~ and n, may be used as variational parameters in applications. We 
have also included a term due to an arbitrary driving force F. The physical situation 
described by the action may be understood in terms of the particle of mass m interacting 
with n fictitious particles of mass M, = ~,/n:. 

A corresponding expression for the propagator in the case of one oscillator ( n  = 1 )  
has been given by Sa-yakanit [3]. The method of derivation involved the introduction 
of a fictitious particle. More recently, this result was rederived by Adamowski er al 
[4] from a formalism relating to an  arbitrary non-local harmonic action. However the 
direct method of derivation we choose here, valid for any number of oscillators, does 
not involve either fictitious particles or the formalism of [4]. 

Our basic formalism is as follows. In terms of a path integral, the expression for 
the propagator is 

K(r(t) , t ;r(O),O)= D[ r (~ ) ]exp  - S  . (1.2) Ll1 [I 1 
The integration is over all paths starting at time zero from r ( 0 )  and ending at time f 
at r (  f ) .  Since the action S is a quadratic function of the coordinates, it can be shown 
[ j j  that 

K(r(f) ,  f ;  r(o),O)= G(f)  exp[~Sc l ( r ( f ) ,  r(O),  111. (1.3) 

Here S,, is the classical action obtained by substituting the solution of the classical 
equation of motion into equation (1.1). The prefactor G(t )  is given by 

G(t)=K,=, (O,  f ; O , O ) =  D [ r ( ~ ) ] e x p  -SF=, (1.4) La [: 1 
and is independent of the coordinates r(t)  and r (0 ) .  An explicit expression for this 
prefactor may be derived from the classical solution. 

2. Tie c i d c a i  soiution 

For the action given by equation ( l . l ) ,  the classical equation of motion is 

COS nc(f/2-lT-ul) 
( r ( T ) -  r (u))  = F ( T ) .  (2.1) 

c-, sin init 

and notice that 

qi(7) = n i ( r ( r )  - q j ( T ) ) .  

The equation of motion now takes the form 

(2.4) 
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Integrating twice, we find that 

where, since q2( 1 )  = q;(O), 

A t =  m ( r ( t ) - r ( 0 ) ) -  

and 

Then, substituting for r ( T )  from equation (2.3). we have an equation of motion for qi(7) 

where 

(2.9) 

The matrix P is not symmetric but, in spite of this, it is a simple exercise to show 
that all its eigenvalues are real. It may also be shown that they are positive and distinct 
(as long as the 0, are distinct). These qualities are apparent from the following form 
of the eigenvalue equation: 

(2.10) 

where of denotes an eigenvalue. Without loss of generality the wi and ai may be 
arranged according to 

n:<UJ:<n:<,:<.. .<a2.<02.. (2.11) 

Since its eigenvalues are distinct, the matrix P must have a diagonal similar matrix 
D given by 

P =  V ' D V  (2.12) 

with 

D.. 'I = 0 : s . .  'I ' (2.13) 

The transformation matrix V can be shown to be given by 

(2.14) 

If we now define 

and 

(2.16) 
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the following equation of motion for ~ ~ ( 7 )  can be deduced from equation (2.8): 

J Poulter and V Sa-yakanit 

uj( 7 )  + & ( T )  = hi 

The general solution for ~ ~ ( 7 )  is 

& ( T )  = 4 COS W i T f  bi Sin 

d u  ( T -  u)F(u)  + A T + B  (2.17) 

dU ( 7 -  u)F(u) + A T + B  

-4 /'dos in  w ~ ( T - u ) F ( u )  
W i  0 

where 

(2.18) 

(2.19) 

and, since u, ( t )  = ui(0),  

b j s i n o i f = a i ( l - c o s o i l ) + I  d u s i n q ( r - u ) F ( u )  
mi 

(2.20) 

hi loZ 
h.  

-_ m ( r ( t )  - r(0))  
0: 

after substituting for A from equation (2.6). 

respectively 
Next, using equation (2.141, we may invert equations (2.15) and (2.16) to give 

and 

h. 
m + = I .  

j - ,  wj-n: 

Equation (2.21) leads, with equation (2.10), to the useful identity 

which enables us to rewrite equation (2.5) as 

n 

du(T- -b)F(u)+AT+B-m ~((7). 
i = ,  

Also, from equations (2.7) and (2.19). we see that B is given by 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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We now seek explicit expressions for ai and bi. From equation (2.2), substituting 
for r ( T )  from equation (2.24) and then for U,(.) from equation (2.18), we see that 

- m 1 (a, cos W,T + bj sin W,T) 
j-, 

+ m  j = , W j  _h: j 'dvsinwj(T-c)F(v)  0 

Also, from equation (2.21) after substituting for ui(0) from equation (2.19), 

(2.26) 

(2.27) 

These two expressions may be compared after noticing that, using equation (2.22), 

(2.28) 

The result of this comparison is that 

-ajcos wjT-bjsin dusinw,(T-u)F(v) . (2.29) 3 
Now, performing the integrals over T and using equation (2.6) for A and equation 
(2.20) for bi, it can be shown that 

2 &(aj sin wjt + bj(l -cos dT (1 -cos w j ( t - T ) ) F ( T )  
j = ,  w ,  -0; 

Since the driving force F and the parameters I ,  r ( t )  and r (0 )  are all arbitrary, this 
equation may be satisfied only by setting the expression in parentheses equal to zero. 
We then have that 

a, sin wit+ b,(l -cos wit) =T dT (1  -cos W{(~-T))F(T). (2.31) 

Solving together with equation (2.20), the final expressions for ai and bj are found to 
be 

w i  hi i' 0 

a, = f m  ( r (  t )  - r ( 0 ) )  7 h' +- -j *' sino't ~ o ' d i ( l - C O s w , ( t - T ) ) ~ ( ~ )  
w ,  2 w ,  1-cosw,r 

(2.32) 
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and 
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hi l+cosoif  1 h.  
oi sinwit 2 0; 

b j =  - f m ( r ( t ) - r ( O ) ) T  . +- lo' dT (1 -COS o;(t - T ) ) F ( T )  

1 hi 1 +cos wit Jo' 
2 m i  sin wit  

+- 7 d T s i n q ( t - T ) F ( ~ ) .  (2.33) 

The solution of the classical equation of motion i s  now given. From equations 
(2.24) and (2.18) we see that 

n 

-m (ai cos OF+ b( sin W ~ T )  
i = ,  

(2.34) 

where ai, bi, A and B are given by equations (2.32), (2.33), (2.6) and (2.25) respectively. 
The classical action S,, is given by substitution of the classical solution into equation 

(1.1). Firstly, however, it is useful to show, from equations (1.1) and (2.1), that 

s,, = fm( i (  t)  . r( t )  - r(0) . i(o))+f dTF(7) . r(7) (2.35) 

with r(T) given by equation (2.34). The velocity i(~) is given, after differentiating 
equation (2.34), by 

lo' 

(2.36) 

A final expression for S,, is obtained by substitution into equation (2.35). The manipula- 
tions are straightforward but somewhat lengthy. We find that 

;=, 0{ 2r 

x(sin w j ( t - T )  sin 0iu-4sinfw,Tsintoi( t -7)  sin:w,usintwi(l-u))j. 

(2.37) 

For the case of one oscillator ( n  = 1) it is a simple exercise to show that this reduces 
to the same expression as given by Sa-yakanit 131. 
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We now have a complete solution of the classical problem concerning a particle 
of mass m interacting with n other particles of mass Mi = ~ J n f  and also being under 
the influence of an arbitrary driving force. This system will he translationally invariant 
only if 

(2.38) 

3. The prefactor 

The prefactor G( t )  of the propagator is defined in equation (1.4). An explicit expression 
for this function may be given from the classical solution by introducing a generating 
functional. 

Firstly, from equation ( l .4 ) ,  we see that 

a 
d K {  

-ihK,-ln G ( t ) =  

where the average (x), for any quantity x, is given by 

(x)=- Ino D[r (7)1x  exp[+ SF=,]. 
G ( t )  

Then, substituting for the action from equation (1.1); 

Secondly, we introduce a generating functional 

If the function F is chosen to be given by 

F(7’)  = hk(S(7- 7 ’ )  - 8 ( u  - 7’)) 

then 

Z[F]=(exp[ik.(r(7)-r(u))]). 

%.c genera!ing fnnctiona! may he expressed explicitly by substituting for F from 
equation (3.5) into equation (2.37) for the classical action and setting r ( r )  = r ( 0 )  = 0. 
The result is that 

(exp[ik.(r(.r)-r(cr))l)=exp[-tihk’R(~~-u~)l (3.7) 

with 

Next, expanding equation (3.7) in powers of k2  for each space dimension, we have that 

( ( r ( T ) -  r ( u ) ) ’ )  = i h  dR(lr-VI) (3.9) 
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where d is the number of space dimensions. Now, substituting into equation (3.3), it 
can be shown that 

cos ni(r/2 - x)  
sin +nit 

NI). (3.10) 
J 

8Ki 
- lnG( t )= idOi  

Performing the integrals and making use of equation (2.28) then leaves us with 

In order to proceed further we first need to invert equation (2.10) to give an 
expression for K ;  in terms of the wi and 0,. The result, after some algebraic manipula- 
tions, is 

(3.12) 

where the prime on the product indicates that the j = i factor is excluded. Similarly 
inverting equation (2.22) we find that 

From these two expressions it can be shown that 

!El=!!!.- 1 
J K ;  2 wj of-Of 

which, with equation (3.11), means that 

(3.13) 

(3.14) 

(3.15) 

Integrating this equation and comparing with the free-particle limit ( K ~  = 0, w; =ai) 
finally gives 

(3.16) 

In this expression, the first factor is the prefactor for the free-particle propagator [ 5 ] .  
For the case of one oscillator (n = 1 )  this expression agrees with that of [3]. 

We now have a complete expression for the propagator corresponding to the action 
of equation (1.1). It is given by  equations (1.31, (2.37) and (3.16). 

4. Concluding remarks 

We have given a complete expression for the propagator corresponding to the motion 
of a series of any number of non-local harmonic oscillators with an arbitrary driving 
force present. Our expression is complete in the sense that the parameters 1, r( 1 )  and 
r (0 )  are all kept completely general. 

Concerning the use of this propagator in variational calculations, the original 
expression for the action contained 2 n  variational parameters ( K~ and a; for 1 6  i s  n). 
In contrast, the final expression for the propagator does not depend explicitly on the 



Propagator corresponding to a model quadratic action 1541 

I C ~ .  However, we may equally well choose our 2n variational parameters to be the 0, 

and Ri with hi given by equation (3.13). The essential point here is that it is not 
necessary to perform any matrix diagonalizations in order to estimate physical quan- 
tities by variational techniques using the trial action of equation (1.1). 
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